3.3.26 \(\int \frac {(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)} \, dx\) [226]

3.3.26.1 Optimal result
3.3.26.2 Mathematica [A] (verified)
3.3.26.3 Rubi [A] (verified)
3.3.26.4 Maple [A] (verified)
3.3.26.5 Fricas [C] (verification not implemented)
3.3.26.6 Sympy [F]
3.3.26.7 Maxima [F(-2)]
3.3.26.8 Giac [F]
3.3.26.9 Mupad [F(-1)]

3.3.26.1 Optimal result

Integrand size = 28, antiderivative size = 70 \[ \int \frac {(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)} \, dx=-\frac {2 i e^2 \sqrt {e \sec (c+d x)}}{a d}+\frac {2 e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {e \sec (c+d x)}}{a d} \]

output
-2*I*e^2*(e*sec(d*x+c))^(1/2)/a/d+2*e^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1 
/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*(e*se 
c(d*x+c))^(1/2)/a/d
 
3.3.26.2 Mathematica [A] (verified)

Time = 1.36 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.70 \[ \int \frac {(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)} \, dx=\frac {2 e^2 \left (-i+\sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )\right ) \sqrt {e \sec (c+d x)}}{a d} \]

input
Integrate[(e*Sec[c + d*x])^(5/2)/(a + I*a*Tan[c + d*x]),x]
 
output
(2*e^2*(-I + Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])*Sqrt[e*Sec[c + 
d*x]])/(a*d)
 
3.3.26.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {3042, 3982, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)}dx\)

\(\Big \downarrow \) 3982

\(\displaystyle \frac {e^2 \int \sqrt {e \sec (c+d x)}dx}{a}-\frac {2 i e^2 \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e^2 \int \sqrt {e \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}-\frac {2 i e^2 \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{a}-\frac {2 i e^2 \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}-\frac {2 i e^2 \sqrt {e \sec (c+d x)}}{a d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {e \sec (c+d x)}}{a d}-\frac {2 i e^2 \sqrt {e \sec (c+d x)}}{a d}\)

input
Int[(e*Sec[c + d*x])^(5/2)/(a + I*a*Tan[c + d*x]),x]
 
output
((-2*I)*e^2*Sqrt[e*Sec[c + d*x]])/(a*d) + (2*e^2*Sqrt[Cos[c + d*x]]*Ellipt 
icF[(c + d*x)/2, 2]*Sqrt[e*Sec[c + d*x]])/(a*d)
 

3.3.26.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3982
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*( 
x_)])^(n_), x_Symbol] :> Simp[d^2*(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + 
f*x])^(n + 1)/(b*f*(m + n - 1))), x] + Simp[d^2*((m - 2)/(a*(m + n - 1))) 
 Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ 
[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && LtQ[n, 0] && GtQ[m, 1] &&  !IL 
tQ[m + n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
3.3.26.4 Maple [A] (verified)

Time = 6.63 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.96

method result size
default \(-\frac {2 i e^{2} \left (F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+F\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+1\right ) \sqrt {e \sec \left (d x +c \right )}}{a d}\) \(137\)

input
int((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c)),x,method=_RETURNVERBOSE)
 
output
-2*I*e^2/a/d*(EllipticF(I*(csc(d*x+c)-cot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1 
/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+EllipticF(I*(csc(d*x+c)-c 
ot(d*x+c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+1 
)*(e*sec(d*x+c))^(1/2)
 
3.3.26.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.90 \[ \int \frac {(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)} \, dx=-\frac {2 \, {\left (i \, \sqrt {2} e^{2} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + i \, \sqrt {2} e^{\frac {5}{2}} {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right )}}{a d} \]

input
integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c)),x, algorithm="fricas")
 
output
-2*(I*sqrt(2)*e^2*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c 
) + I*sqrt(2)*e^(5/2)*weierstrassPInverse(-4, 0, e^(I*d*x + I*c)))/(a*d)
 
3.3.26.6 Sympy [F]

\[ \int \frac {(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)} \, dx=- \frac {i \int \frac {\left (e \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}{\tan {\left (c + d x \right )} - i}\, dx}{a} \]

input
integrate((e*sec(d*x+c))**(5/2)/(a+I*a*tan(d*x+c)),x)
 
output
-I*Integral((e*sec(c + d*x))**(5/2)/(tan(c + d*x) - I), x)/a
 
3.3.26.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c)),x, algorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.3.26.8 Giac [F]

\[ \int \frac {(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {5}{2}}}{i \, a \tan \left (d x + c\right ) + a} \,d x } \]

input
integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c)),x, algorithm="giac")
 
output
integrate((e*sec(d*x + c))^(5/2)/(I*a*tan(d*x + c) + a), x)
 
3.3.26.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e \sec (c+d x))^{5/2}}{a+i a \tan (c+d x)} \, dx=\int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \]

input
int((e/cos(c + d*x))^(5/2)/(a + a*tan(c + d*x)*1i),x)
 
output
int((e/cos(c + d*x))^(5/2)/(a + a*tan(c + d*x)*1i), x)